翻訳と辞書 |
Hochster–Roberts theorem : ウィキペディア英語版 | Hochster–Roberts theorem In algebra, the Hochster–Roberts theorem, introduced by , states that rings of invariants of reductive groups acting on regular rings are Cohen–Macaulay. In other words, :If ''V'' is a rational representation of a reductive group ''G'' over a field ''k'', then there exist algebraically independent invariant homogeneous polynomials such that is a free finite graded module over . proved that if a variety has rational singularities then so does its quotient by the action of a reductive group; this implies the Hochster–Roberts theorem as rational singularities are Cohen–Macaulay. == References ==
* * * Mumford, D.; Fogarty, J.; Kirwan, F. ''Geometric invariant theory''. Third edition. Ergebnisse der Mathematik und ihrer Grenzgebiete (2) (Results in Mathematics and Related Areas (2)), 34. Springer-Verlag, Berlin, 1994. xiv+292 pp. ISBN 3-540-56963-4
抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「Hochster–Roberts theorem」の詳細全文を読む
スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース |
Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.
|
|